Which specs are important and which can be disregarded

Robert Triggs / Android Authority

While it’s hard to go wrong with any of today’s top-tier smartphones, ending up with the best bang for your buck or splitting the mid-range wheat from the chaff is still often a case of deciphering a phone’s spec sheet. This already laborious task isn’t helped by the marketing gobbledegook thrown around by various brands in a bid to make their otherwise mediocre handsets stand out. Just what the heck is “virtual RAM” anyhow?

To help, let’s break down all the key smartphone specifications and highlight what to look out for — and what to ignore — when making your next purchase.

Your phone’s brain: The processor

Good specs: Snapdragon 8XX or 7XX series Tensor, Exynos 2XXX, Dimensity 9XXXX

Ignore: Undisclosed “octa-core” CPU An old chip that’s nearing end-of-life

We’ll start with the processor (or SoC) first. Weirdly, this is both the most and least important aspect of your phone, depending on what you expect from your next handset. If you have to have the absolute best performance, features, and networking capabilities, then a flagship chip is a must, but often these features are surplus to requirements.

There are too many chipsets to get into them all, but virtually every smartphone processor built since the turn of the decade is ample for running key mobile tasks: browsing Facebook, scrolling Insta, that sort of thing. Google’s Pixel range is a prime example of smartphones that don’t pack the absolutely fastest processors around yet still offer one of the best mobile experiences in their price brackets. It’s more about what your phone can do than what it benchmarks.

That said, I’d urge everyone to avoid the bottom-of-the-barrel processors you’ll still find in ultra-affordable handsets, if it can be helped. Anything that lists itself as little more than an “octa-core” processor is still probably bad news. Ignore core counts and GHz; you need to look at a chip’s broader capabilities.

iPhones, of course, all sport high-end chips, so there’s little issue (or choice) here anyway. If you want to be sure of top-tier Android performance, stick to flagship-grade chips from the big players. Qualcomm’s Snapdragon 8 and 8S, MediaTek’s Dimensity 9___, Samsung’s Exynos 2___, and Google’s Tensor series are all rock solid, even if you pick a model that’s a generation or two old at this point.

High-end mobile gamers, however, will find the latest features, such as ray tracing, and the fastest performance on the latest processors, such as a phone with a Snapdragon 8 Gen 3, which is also a boon for heavy multitaskers and those who edit their photos and videos on the go. It’s those less mainstream use cases that really benefit from focusing on the processor as a key component, but even then, you have to consider thermals and cooling as well, and bigger phones tend to do better at that.

If you’re on a tighter budget, sliding down to the Snapdragon 7 or even 6 series, along with MediaTek’s more recent Dimensity 8XXX range, is a fair compromise that won’t disappoint on the networking or security fronts, and even AI capabilities are quickly making their way down to these price points.

How does the phone perform under stress, and does it have the gaming, AI, or other features you want? Of course, you can get pretty granular on all the internal processor differences. CPU core counts and microarchitectures for general processing, GPU for gaming and other graphics, ISP capabilities for pictures and video, and the latest trends in NPUs for AI.

While interesting from an enthusiast standpoint, we can’t mix and match these parts ourselves, and it would be a waste of time to make a purchasing decision based on specs like clock speed GHz or AI TOPS. It’s less of a headache to follow the general portfolio trends outlined above and pay attention to the on-device features that a given handset is capable of and maybe a benchmark or two if you need higher-end performance.

The bottom line is that picking the best processor used to matter a lot more than it does today. However, elite gaming and AI are starting to shift focus back to the flagship-tier chipsets once more.

Cameras, cameras, cameras

Good specs: Wide, ultrawide, and telephoto combo Wide aperture on the main and tele Good-sized sensors on all lenses

Ignore: Counting megapixels Ultra-long range zoom claims Macro lenses

For most people, their smartphone is their primary camera. As such, navigating this increasingly complex area of a modern smartphone is a must, but it isn’t easy. First, let’s dive through the key terms.

Megapixels — More is better? Well, it depends. In theory, more pixels mean more detail, providing enough light to make it to the tiny pixel. More pixels in a small space means less light per pixel, which can reduce dynamic range, increase noise, or longer shutter speeds. Not good. Modern pixel-binning sensors aim to get around this by merging data from nearby cells while allowing for high-resolution photography, but you’re often left shooting at a lower resolution by default. Still, remember that just 12MP is more than enough for a 12-inch print. Don’t be swayed by the allure of a 200MP sensor.

Sensor size — The flip size of megapixels is the overall sensor size; the bigger the sensor, the bigger the pixels, and the better the light capture. 1-inch is as large as we’ve seen in smartphones, though around 1/1.3-inch is more typical for primary cameras and often much smaller for secondary and third cameras. Sensors below 1/2 are small by modern standards and won’t pair well with high megapixel counts or low-light environments. Bigger is better, but that comes with a larger camera bump as a trade-off, so there’s a limit, and around 1/1.5 inches or above is adequate.

Aperture — Part of the “exposure triangle,” the aperture measures how wide the lens opening is. Again, wider means more light, which is good, and more bokeh, which is also deemed good (mostly). However, very wide apertures and very large sensors can struggle with partial subject focus, particularly at close ranges, and they don’t make for the sharpest landscapes. Thankfully, variable aperture technology gives you the best of both worlds, but it’s only found in a handful of premium smartphones. Don’t dwell on this spec, but be cautious of any smartphone lens with an aperture below f/3; it probably won’t be very good in low light.

Focal length/zoom — These are two halves of the same coin; divide two lens’ focal lengths and you get the zoom factor when switching between them. For example, a 75mm telephoto lens has 3x the zoom factor of a 25mm lens. Paying attention to the optical zoom levels a phone has is important; you’ll receive the best image quality at these points. Factors in between will rely on software upscaling of some kind, which leaves a big gap between, say, a 1x and 5x lens. Equally, focal length tells you a little bit about what the lens is good for. Below 20mm is extremely ultrawide, good for landscapes and broad scenes but at the expense of distorted proportions. 35 mm is roughly equivalent to the human eye’s field of view, 50mm or so is considered the most flattering for portraits, and 100mm or more is a long-range zoom. Also, ignore any claims of 50x or 100x zoom; those are always digital and look terrible.

We could dive deeper into autofocus technologies (make sure your wide lens has AF at least!), backplane types, and the like, but that’s getting too deep into the weeds for this article and probably shouldn’t sway your entire phone choice unless you’re after something very, very specific. Instead, the next step is to look at what camera lenses the phone has. These typically fall into five categories: ultrawide, wide/primary, telephoto, periscope, and macro.

99% of the time, a dedicated macro camera is just there to pad out the numbers. They’re usually low resolution, tiny, and basically bad. Pretend the phone doesn’t have it; you’ll likely forget about it anyway. A wide and ultrawide pairing is most common in the mid-range market, offering a step back to fit more in but lacking long-range or truly portrait-friendly capabilities. Telephoto and periscope are two different ways of building a zoom camera; the latter bounces light off a mirror or two, creating a longer focal…

Related Articles

Latest Updates